

BYSE, BYSO Transfer air device

Transfer air device BYSE, BYSO is intended for positioning on a wall, and can be used in most environments. The devices provide good sound attenuation and are easy to install. They are made from hot-dip galvanized steel sheet. Visible parts are powder-coated for a high surface finish and good impact and scratch resistance.

Quick Selection

Transfer air device BYSE, BYSO

Device size	Flow at 10 Pa (I/s)	Flow at 15 Pa (I/s)
BYSO-100	16	20
BYS0-160	32	40
BYSE-300	21	25
BYSE-500	32	38
BYSE-700	44	55
BYSE-850	56	70

Specifications

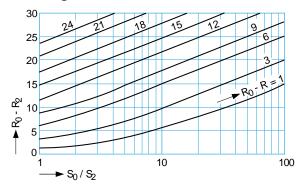
• Good sound attenuation

• Easy to install

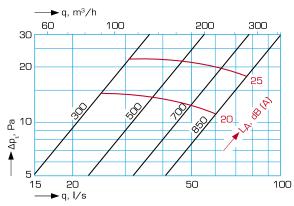
Product code example Transfer air device BYSE-500

AIRTREND Ltd. Predstavništvo u Beogradu Kumanovska 14 11000 Beograd Tel: 011 3836886, 3085740 Faks: 011 3444113 e-mail: gobrid@eunet.rs web: www.airtrend.rs

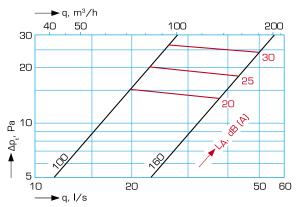
FläktGroup[®]


Acoustical data

Sound attenuation, transfer air device


The ability of a transfer air device to provide sufficient sound attenuation is determined by calculating the reduction index for the wall including the transfer air device. Note that the door, which is usually the weakest link, must also be included in the calculation.

A quick-selection alternative is to select a transfer air device with an R_w value that is 5 dB higher than the R_w values of the door.


Resulting reduction index for the wall

Transfer air via transfer air device BYSE

Transfer air via transfer air device BYSO

Sound power level BYSE

		C	orrectio	n of so	und leve	l in dB a	at	
Size	63	125	250	500	1000	2000	4000	8000 Hz
All	8	7	4	2	0	-12	-19	-19

Reduction index BYSE

		F	Reduction	n index R	₂ in dB a	t	
Size	125	250	500	1000	2000	4000 Hz	R _w
300	31	38	46	46	53	55	46
500	30	35	43	43	55	55	43
700	30	34	42	41	56	55	42
850	29	32	39	40	57	55	40

The values are applicable for a device installed in a plaster wall with a reference surface area = 2 m^2 . the reduction index falls when it is installed in a concrete wall ($R_w - 10 \text{ dB}$)

Sound power level BYSO

		C	Correctio	on of so	und leve	l in dB a	at	
Size	63	125	250	500	1000	2000	4000	8000 Hz
100	8	2	0	З	1	-11	-19	-21
160	13	7	5	5	-3	-13	-19	-22

Reduction index BYSO

	Reduction index R ₂ in dB at							
Size	125	250	500	1000	2000	4000 Hz	R _w	
100	38	37	36	42	58	58	40	
160	35	34	34	41	60	60	38	

The values are applicable for a device installed in a plaster wall with a reference surface area = 2 m^2 . the reduction index falls when it is installed in a concrete wall ($R_w - 10 \text{ dB}$)

Dimensioning example

A transfer air device, positioned in a wall with a surface area of 15 m^2 , must be dimensioned. The reduction index of the wall is stated by the wall manufacturer, although in this example it can be found from the following table:

Reduction index R ₀ in dB for actual wall at							
125	250	500	1000	2000	4000 Hz	Rw	
37	44	53	56	58	58	55	

Given data:

Air flow 30 l/s

Total pressure drop about 10 Pa

Calculation

1. In the graph on the previous page find BYSE-500, sound level < 20 dB(A), and total pressure drop 9 Pa.

2. The resulting reduction index R is obtained as follows:

a. Read the reduction index R_0 of the wall from the table.

b. Read the reduction index $R_{\rm 2}$ of the transfer air device from the table.

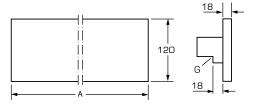
c. Calculate R₀ - R₂.

d. The surface of the wall $S_0 = 15 \text{ m}^2$ and the transfer air device reference surface $S_2 = 2 \text{ m}^2$, which gives a surface ratio of 7,5 (S_0/S_2). With the help of the value of $R_0 - R_2$, read the value of $R_0 - R$ from the graph on page 2.

e. Subtract the value R_0 - R from R_0 .

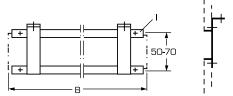
The calculation can be presented as follows:

			Reducti	on index	in dB at		
Step	125	250	500	1000	2000	4000 Hz	R_w
a.R ₀	37	44	53	56	58	58	55
b.R ₂	-30	-35	-43	-43	-55	-55	
c.R ₀ -R ₂	7	9	10	13	З	З	
d.R ₀ -R	2	З	4	6	1	1	
e.R	35	41	49	50	57	57	51 ¹⁾


¹⁾ Calculated according to standardized calculation procedure.

When two identical transfer air devices are positioned in the same wall, R_2 must be reduced by 3 dB before calculating R.

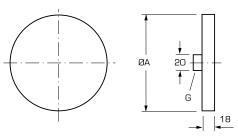
Dimensions and weights


BYSE

Cover plate

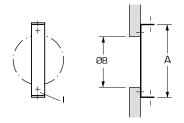
G = Distance plate

Fixing plate


I = Fixing hole Ø5

Size	A [mm]	B [mm]	Hole ¹⁾ [mm]	Weight [kg]
300	360	300	300 x 50	1.2
500	560	500	500 x 50	1.7
700	760	700	700 x 50	2.3
850	910	850	850 x 50	2.7

¹⁾ Tolerance + 5/– 0 mm


BYSO

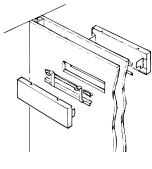
Cover plate

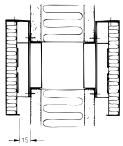
G = Distance plate

Fixing plate

I = Fixing hole Ø5

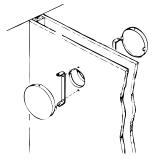
Size	A [mm]	Hole ¹⁾ [mm]	Weight [kg]
100	250	100	0.9
160	350	160	1.5


¹⁾ Tolerance + 5/-0 mm



Installation

BYSE


Transfer air device in studwork wall

BYSO

Transfer air device in studwork wall

General

Application

Transfer air devices BYSE, BYSO are intended for positioning in a wall, and can be used in most environments. The front panels of the device are lined internally with a sound attenuating material of the dacron type.

Material and surface finish

The devices are made of hot-dip galvanized steel sheet. Visible parts are powder-coated for a high surface finish and good impact and scratch resistance.

Standard colour is white (RAL-9010). Other colours are available on special order.

Instructions

Directions for installation, adjustment and care are set out in detail in our technical instruction which accompanies each product. The instruction is also accessible on www.flaktgroup.com.

Technical data and dimensioning

For complete dimensioning details, please see FläktGroup product selection program. Contact our nearest sales office for further information.

Descriptive text

Transfer air device BYSE/BYSO manufactured by FläktGroup.

Product code

Transfer air device	BYSE-aaa	
Transfer air device, special colour	BYSE-aaa-E	
Size, nominal width in mm (aaa) 300, 500, 700, 850		
A BYSE includes two cover plates and two frames.	o mounting	
Transfer air device	BYSO-aaa	
Transfer air device, special colour	BYSO-aaa-E	
Size, nominal width in mm (aaa) 100, 160		

A BYSO includes two cover plates and two mounting frames.